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The propagation of perturbation waves in real liquids moving in elastic and elastovis- 
cous tubes has been considered several times in the literature [1-5]. Those studies examined 
the effects of rheological characteristics on perturbation wave propagation in tubes with New- 
tonian and non-Newtonian (viscoplastic , power-like, relaxation) liquids. The problems consid- 
ered essentially reduced to solution of linearized systems of equations describing the New- 
tonian and non-Newtonian liquids. However, the linearization used was not always justified, 
since consideration of nonlinearity may lead to qualitatively new effects. Thus the present 
study will investigate propagation of nonlinear waves in rheologically complex liquids in mo- 
tion within tubes. 

The system of differential equations describing the motion of a real liquid in tubes has 
the form [i] 

a(/pw)/o.t -~- o(]p~,~)/o.~ = - l a p / a x  ~ zT(w), 6(l,o)/at + 6qpw)/Ox = o, (1) 

w h e r e  f i s  t h e  c r o s s - s e c t i o n a l  a r e a  o f  t h e  t u b e ,  ~ i s  t h e  l i q u i d  d e n s i t y ,  w i s  t h e  mean l i q u i d  
v e l o c i t y  o v e r  t u b e  s e c t i o n ,  p i s  p r e s s u r e ,  X i s  t h e  w e t t e d  p e r i m e t e r ,  T i s  t h e  t a n g e n t  s t r e s s ,  
x is the direction of the flow, and t is time. 

We assume that the cross-sectional area of the tube depends on pressure in accordance with 
Hook' s law: 

] __ /O(i .~_ (p _ po)/E) ' (2 )  

while the eouation of state of the non-Newtonian liquid has the form 

2P 0 

where fo is the tube area at pressure po; a is some dimensionless coefficient depending on 
the form of the cross section and the wall thickness; E is the modulus of elasticity of the 
tube material; y is a constant characterizing the medium; co = (dp/d0)I/= is the unperturbed 
wave velocity; 0o is the unperturbed density; 01 is the change in density. 

With consideration of Eqs. (2), (3), after several transformation system (I) may be writ- 
ten in the form 

atvo_..F q- -~o-~-c2 o Op~ = __.%~ (72Po-- ]) ap~ox 2t Ou: 2Ox q- ~ofo% T (W), 

a o a 2 (4) 
T co + ~ / ~  + y . ~  (v + ~) ~ -  + . . . .  o~ - ~  ~o + po ] a~ 2~ o (v + t) v r "  

For a specified friction law the system of nonlinear equations can be solved by numerical 
methods. An approximate solution of system (4) can be obtained by using certain simplifica- 
tions [6]. 

After a number of transformations and use of approximations (~/~t ~ -- ci$/~x, w = ci01/ 
0oo, third-order density value neglected, and operator 8/~x omitted) system (4) can be written 
in the form 

~ + (cl + 2=pl) ~ = ~ (pl), (5) 
ot 
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The friction law T(p~) can be written easily if the rheological curve of non-Newtonian liquid 
flow T(w) is specified. 

A characteristic feature of the solution of hyperbolic equation (5) when dissipation is 
neglected in the liquid (T(p~) ~ 0) is the distortion of the propagating wave profile due to 
nonlinearity in the wave velocity [7]. Consideration of dissipation in the liquid naturally 
leads to attenuation of the wave, while features of the friction law may have a significant 
effect on the attenuation process. 

We will consider propagation of perturbation waves in non-Newtonian liquids described by 
the following rheological equations of state: 

for a power-law liquid; 

t(w) = -kow,~  ( 6 )  

o 7 f  + ~ = 8r~ ( ~ ~ (7) 

f o r  an  O ld royd  v i s c o e l a s t i c  ( r e l a x a t i o n )  l i q u i d .  

The c h o i c e  o f  t h e  model  o f  Eq. (7) i s  b a s e d  on s t u d i e s  p e r f o r m e d  in  [8,  
c o n t a i n i n g  p a r a f f i n ,  r e s i n ,  and a s p h a l t  c o m p o n e n t s .  

With  c o n s i d e r a t i o n  o f  t h e  a p p r o x i m a t e  e q u a l i t y  u s e d  a b o v e ,  Eqs .  (6) and (7) may be  r e p r e -  
s e n t e d  i n  t h e  f o r m s  

. - ( 8 )  (p~) - -  kpl; 

Od'udt ~- t = - -  kl(pl ~- ~dfh/dt), . (9) 

where  k = k o ( c ~ / p o o ) n ;  k~ = 8 p c l / D p o o ;  ko ,  n a r e  t h e  d i m e n s i o n l e s s  r h e o l o g i c a l  p a r a m e t e r s  o f  
t h e  c o n s i s t e n t  f l o w  c u r v e ;  B i s  t h e  l i q u i d  v i s c o s i t y ;  D i s  t h e  t u b e  d i a m e t e r ;  0, ~ a r e  t h e  r e -  
l a x a t i o n  and r e t a r d a t i o n  t i m e s .  

The s o l u t i o n  o f  Eq. (9) f o r  T h a s  t h e  fo rm 

[ 
t = t t[t=o - -  k~ --6- P~ + 

(10) _t_ dp 1 I t_ ~_tl ,, 
- -  k I (0 - -  ~t,) e o " ~  It=o - -  kip" Jc ki (0 - -  -.,~'h dpldt - -  kj. (0 ~ K) o y e - - - ~  d'pldt-'~ dQ. 

9] with petroleums 

We assume that at the initial moment t = 0, x = ~ some perturbation is specified: 01 = 
p11(~) (for a power-law liquid) and Tlt=o = kiXpl/01t=o, P11t=o = P~(~)' dp~/dtlt=~ = 0 (for 
an Oldroyd viscoelastic liquid). 

The solution of Eq. (5) with consideration of Eqs. (8), (I0) reduces to integration of 
ordinary differential equations along characteristics [7]: 

dP-A= ~ k p ~ ,  d _ ! = c l  + 2apl; (ii) 
dt dt 
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where 
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of initial conditions the solution of system (ii), (12) 
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(16) 
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2a- -~k l (O--~ '  ~~176176 " ' +  2al~ 2a~~ a~~ t [e~l~ i) -b ~]i pn (~) 

for ( t  + ~zi~)  ~ - ~o~}~;  

where 

P'* (~) e =1o' si~ ( s n t  + ~), Pl ----" sin 
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for (1 + ~k~X)2<40~k t ,  

~ i / 2  = 20 ': 

(17) 
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We will first analyze the features of wave propagation in a power-law liquid. 

It is evident from Eqs. (13), (14) that at n = 1 (viscous liquid) and n > i (dilatant 
liquid) the initial density perturbation damps out, taking on a zero value as t § ~. At n< 
1 (pseudoplastic liquid) the density value vanishes upon expiration of a finite time t = T, 
which is determined by the first equation of Eq. (13) and equal to T = [pli(g)]i-n/(l -- n)Bk. 

It follows from the latter that in pseudoplastic liquids a perturbation wave propagates 
to a,finite depth which is given by the expression 

x--~= i ~ ~ (2--n) pk" 

This most important: effect, caused by thenonlinearity of the dissipation law, explains 
certain phenomena in rheologically complex liquids. For example, it is impossible to start 
up pipelines containing pseudoplastic petroleums after a certain shutdown period. 

From the second expressions of Eqs. (13), (14) it is evident that nonlinearity in the 
equation of state of the liquids leads to distortion of the wave profile. The possibility of 
wave upset may be determined by differentiating Eqs. (13), (14) with respect to the parameter 
~. 

The approximate time and section in which upset may occur can be estimated in the follow- 
ing manner. Let the wave profile at the initial time have the formpli(~). At ~ = 0 p11(0) = p~o, 
while at ~ = ~ p~1(~) = 0, where $~ is the width of the wave at t = O. It is evident from 
Eq. (ii) that the speed of the wave corresponding to $ = 0 is equal to 

Cr+ 2aploL/t (i--~T.t~i_,) ~k ~ !~' 
10 ) 

at n # 1 and c~ + 2~ploe -Bkt at n = i, while at ~ = $~ it is equal to ci. 

cl + 2~pl > ci.  

Then the wave upset time can be determined from the expressions 

Since ~ > 0, then 

1 

1 ~-~ T o =-- for 
rio 2aPlo 

T 6 e - ~ h T o = ~  for. n = l .  2aPio 

Substituting the values found for To in the second expression of Eq. (13) and (14), we de- 
termine the sections in which upset of the perturbation wave occurs. For pseudoplastic liquids 
(n < i) wave upset can occur under the condition To < T. In the opposite case the perturbation 

wave damps out before upsetting. 

If a = 0 (pressure depends linearly on density) then each point of the wave moves with an 
identical velocity cl and upset cannot occur. Figure 1 shows qualitative curves of the change 
in density with time and a characteristic diagram for nonlinear perturbation waves in power- 
law rheologically complex liquids with step-like density change. 

Inasmuch as at the initial time in the section x = 0 there is a maximum density value, 
the wave velocity is maximum independent of the parameter n, and equal to c! + 2~pio. In Fig. 
1 this velocity is characterized by the tangent of the angle ~ at the points t = 0, x = 0. 

Upon propagation of the perturbation wave the density value pl tends to zero. Therefore, 
the wave velocity tends to the value c~, characterized by the tangent of the angle ~ (Fig. i) 
independent of the nonlinearity parameter n. At a = 0 the wave velocity c~ is constant and 

characterized by the angle 4, passing through the origin. 
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We will now analyze the features of perturbation wave propagation in Oldryod viscoelastic 
liquids. It is evident from Eqs. (15) and (17) that under the condition e < (i + SkiX)2/(4~kl) 
the initial density perturbation decreases monotonically, while in the case--X < 0 < (I + BkIX)2/ 
(46ki) the density value attenuates more rapidly than in liquids with parameters ~ = 0, 0 = 0 
(viscous liquid) and X > 0. 

For viscoelastic liquids upon fulfillment of the condition 0 > (i + BkiX)2/4~kl) the ini- 
tial density perturbation oscillates with a frequency ~406ki -- (17+ BkIX)2/20, which decays 
exponentially with the parameter --(i + SkIX)/20. It is evident that with increase in 0 the 
frequency and damping parameter decrease, while increase in X increases the value of the damp- 
ing parameter and decreases the oscillation frequency. 

We may note the following regarding the velocity of perturbation wave propagation. The 
presence in the liquid of a relaxation time 0 increases the wave propagation speed and decreas- 
es the effect of nonlinearities on perturbation wave propagation as 0 + 2~poo/(~k~cl) + X, 
while the presnece of a retardation time X decreases the wave propagation velocity and increas- 
es the effect of nonlinearities. Under the condition 2~ -- Bk1(0 -- X)cl poo = 0 the perturba- 
tion wave propagates as in a linear viscoelastic liquid. 

Characteristic curves of change in density with time and perturbation wave characteristic 
diagrams in a viscoelastic liquid with step-like density change, i.e., with t = 0, x = O, 
P11($) E Plo are shown in Figs. 2, 3. 

Analysis of the second expression of Eq. (12) with consideration of the first expressions 
of Eqs. (15) and (16) shows that with increase in relaxation time 0 and decrease in retarda- 
tion time X the upset time and section increase. Numerical values of these quantities can be 
estimated as was done above. 

The results obtained in the present study may be used to solve concrete engineering prob- 
lems involving optimization of transient flow regimes of rheologically complex liquids in 
petroleum, chemical technology, and other branches of industry. 
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FLOW DETACHMENT FROM THE LEADING EDGE OF A PROFILE AND THE 

EFFECT OF ACOUSTIC PERTURBATIONS 

V. V. Kozlov UDC 532.526 

The study of the phenomenon of detachment of a flow has long attracted the interest of 
researchers because of the wide extent to which detachment flows are found, and their major 
role in flow structure formation. It is known that two different flow regimes may exist after 
detachment [i]. In some cases the initial boundary layer passes above the region of recircu- 
lating liquid and then again attaches to the body at some point down the flow, separating 
"bubbles" of recirculating liquid. In other cases liquid from the boundary layer does not re- 
attach to the body, but travels down the flow, mixing with the recirculating liquid and form- 
ing a wake. In this case for a profile oriented at a large angle of attack, detachment en- 

compasses the entire upper surface. 

The flow regimes described above determine the type of detachment. The detachment may 
be "localized," as in the first case, or may include the entire surface, as in the second. 

The first type of detachment was realized in [2, 3]. In this case, a small "localized" 
detachment was formed in the midpart of the wing profile. It was shown in [2] that natural 
perturbations developing in the detachment region may lead to significant readjustment of the 
flow structure in this region. It was found in [3] that in the region of unfavorable pressure 
gradient acoustic perturbations are transformed to turbulent boundary perturbations (Tollmien-- 

Schlichting waves), which propagate down the flow, which also have a strong effect on the 
structure of the laminar flow in the boundary layer and may lead to elimination Of the detach- 
ment as in the case where perturbations are introduced into the boundary layer by a vibrating 

ribbon. 

The goal of the present study is to generate a detachment encompassing the entire upper 
surface of the profile, i.e., a detachment of the second type, and to study its structure and 

the effect thereon of acoustical perturbations. 

The experiments were performed in a T-324 low turbulence aerodynamic tube at the Siberian 
Branch of the Academy of Sciences of the USSR [4]. The test chamber dimensions were 1 • 1 m 
with length of 4 m. Flow detachment was studied with a symmetrical Zhukovskii airfoil 1 with 
chord of 292 mm and span of 1 m, located at an attack angle of ii ~ at a distance of 1.0 m from 
the beginning of the chamber. A diagram of the experimental setup is shown in Fig. i. A loud- 
speaker 2 was installed in the tube diffusor to excite acoustical oscillations in the flow re- 
gion to be studied. The loudspeaker was driven by a GZ-34 audio generator. A microphone locat- 
ed in the direct vicinity of the model and a PSI-202 precision pulse noise meter were used to 
measure the integral over spectrum of the sound intensity, which was maintained at A s = 90 dB 

in the present experiments (background sound intensity 80 dB). 
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